Herd Immunity & its Risks prediction

Seven factors that are likely to drive herd-immunity timelines for the rest of the world. These factors include the following:

• Population vaccinated—the proportion of people who have received the vaccine so far
• Vaccine courses secured—the additional supplies for which a country has contracted
• Supply-chain readiness
• Consumer vaccine sentiment—the public’s willingness to be vaccinated
• Population under 19 years of age—a greater proportion of children makes a transition toward normalcy easier to achieve but herd immunity more difficult
• Natural immunity, or the rate of prior COVID-19 infection—higher historical infection rates decrease the vaccination rate needed to achieve herd immunity
• Prevalence of variants of concern

Risks to herd immunity

• Herd immunity requires that enough people be simultaneously immune to SARS-CoV-2 to prevent widespread ongoing transmission. While data indicate that the most likely scenario is to reach this state on the timelines described above, five risks could delay progress.
• First, vaccine adoption may prove lower than expected. That could happen if a real or perceived safety issue increases hesitancy or if younger populations see little reason to be vaccinated once older cohorts are protected and a transition toward normalcy is well underway. Second, herd immunity relies on the efficacy of vaccines at reducing transmission (rather than the usually reported efficacy at preventing disease in the vaccinated person). While initial data suggest that COVID-19 vaccines do block significant transmission,25 the efficacy rate may not prove high enough to drive herd immunity. Third, the duration of vaccine-mediated immunity may prove shorter than anticipated, making it hard to reach the necessary threshold for simultaneous immunity. Fourth, supply-chain disruptions and delays are real, and could produce supply shocks and interfere with timelines. Fifth, and most concerning, variants that reduce the efficacy of vaccines or the benefits of natural immunity may spread widely.
• These five factors combined mean that there is still a meaningful chance that herd immunity is not reached in the medium term.
• From theory to practice: What the ‘end’ might look like
• The pandemic’s two endpoints, a transition toward normalcy and herd immunity, may look different in different places. As the name implies, a transition will include a series of steps that will gradually normalize aspects of social and economic life. The order and pace of these steps will vary by geography. Not everyone will immediately resume all of their prepandemic activities; rather, there will be a noticeable shift toward more of them. Steps may include a return to fully in-classroom education, fewer restrictions on the operations of bars and restaurants, more gatherings with larger groups of people, the reopening of offices, and fewer prohibitions on interregional or international travel. The United Kingdom’s plan for reopening provides an example of the stepwise manner in which a transition to normalcy is likely to occur.
Herd immunity will represent a more definitive end to the pandemic. Isolated cases may still occur—indeed, the virus may continue to circulate for one or more quarters after herd immunity is reached. But with herd immunity, population-wide public-health measures can be phased out. As populations get closer to this state, it may be helpful to introduce some nuance to what we mean by the term.
1. Nationwide herd immunity. The full population is well protected so that the country experiences, at most, occasional small flare-ups of disease. This scenario is most likely in smaller countries where immunity to COVID-19 can become uniformly high.
2. Regional herd immunity. Some regions, states, or cities are well protected, while others experience ongoing outbreaks of COVID-19. In large, diverse countries like the United States, this situation is especially easy to imagine.
3. Temporary herd immunity. A population or region achieves herd immunity for some period, but as variants are introduced, against which prior immunity is less effective, a new wave of cases is launched. Another potential trigger for such a wave could come as immunity (particularly natural immunity) wanes. As the number of new cases of COVID-19 falls globally, the rate of emergence of important variants should also decrease, but some risk will remain.
4.Endemicity. A region fails to achieve herd immunity. Endemicity is most likely in places where vaccine access is limited, where few people choose to be vaccinated, if the duration of immunity is short, or variants that reduce vaccine efficacy are common and widespread. Endemicity might include cyclic, seasonal waves of disease, broadly similar to the flu, or a multiyear cycle of resurgence.
The next few years are likely to see a combination of some or all of these options around the world. Given the likely timing of herd immunity in various geographies and the uncertain duration of protection from vaccines (both duration of immune response and efficacy versus new variants), it is likely that some measures such as booster vaccines are likely to be required indefinitely. Herd immunity is not the same as eradication. SARS-CoV-2 will continue to exist. Even when a country reaches herd immunity, ongoing surveillance, booster vaccines, and potentially other measures may be needed.

Sources : https://www.mckinsey.com